<em id="lj1v3"><b id="lj1v3"></b></em>

    <i id="lj1v3"></i>

        <i id="lj1v3"><b id="lj1v3"><progress id="lj1v3"></progress></b></i>

        <video id="lj1v3"></video>
        <video id="lj1v3"></video>

                    <i id="lj1v3"><ol id="lj1v3"><progress id="lj1v3"></progress></ol></i>
                    其他數據論文 最新來稿(未評審) ? 版本 ZH1
                    下載
                    MuSyQ高分16米/10天NDVI植被指數產品(2018-2020年中國01版)
                    MuSyQ GF-series 16m/10days Normalized Difference Vegetation Index product (from 2018 to 2020 across China version 01)
                    : 2021 - 05 - 24
                    : 2021 - 05 - 27
                    极速快三
                    220 0 0
                    摘要&關鍵詞
                    摘要:植被指數(Vegetation Index,VI)是植被遙感研究和應用的最重要參數之一。目前標準化的區域或全球范圍的高分辨率植被指數產品較少。本文利用高分一號(GF1)寬幅相機高時空分辨率的特點,基于植被指數合成算法生產了中國2018-2020年MuSyQ高分16米/10天分辨率的歸一化植被指數產品。本產品可用于監測中國區域植被的結構、物候特征,分析生化理化參數的季節、年際及長期的變化等,為中國地區植被變化分析、農林業應用、生態環境監測提供可靠的數據支撐。
                    關鍵詞:歸一化植被指數產品;高分辨率;中國區域;高分一號
                    Abstract & Keywords
                    Abstract:?Vegetation index (VI) is one of the most important parameters for vegetation remote sensing research and application. However, there are few standardized regional or global high-resolution VI products available now. Taking advantage of the high spatial and temporal resolution of Gaofen1 WFV sensor, MuSyQ NDVI product of 16m/10days resolution in China from 2018 to 2020 was generated using the vegetation index synthesis algorithm. This product can be used to monitor the canopy structural and phenological characteristics of vegetation in China, analyze the seasonal and interannual changes of biochemical and physicochemical parameters. It can provide reliable data for the analysis of vegetation change, the application of agriculture and forestry, and ecological environment monitoring in China.
                    Keywords:?Normalized Difference Vegetation Index (NDVI) product;?high resolution;?China region;?Gaofen-1
                    稿件與作者信息
                    李松澤
                    Songze Li
                    李靜
                    Jing Li
                    lijing01@radi.ac.cn
                    于文濤
                    Wentao Yu
                    張召星
                    Zhaoxing Zhang
                    吳善龍
                    Shanlong Wu
                    仲波
                    Bo Zhong
                    柳欽火
                    Qinhuo Liu
                    出版歷史
                    參考文獻列表中查看
                    中國科學數據
                    csdata